If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-4=0.
a = 1; b = 2; c = -4;
Δ = b2-4ac
Δ = 22-4·1·(-4)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{5}}{2*1}=\frac{-2-2\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{5}}{2*1}=\frac{-2+2\sqrt{5}}{2} $
| S=3/2n+15 | | 10(2y+3)-y=3(8y-8) | | 6/5y+3=3/10 | | 3m+2m+72=124 | | 2x,3x+11=7x+13 | | 7z+11=-34-2z | | 2x-2x-8=3x+2x-6 | | 43=8c-543 | | 1x-3(10)=53 | | 5/8x+4=3/8x+12 | | 3-(4x-7)=5-x | | -54-9x-2x=-10 | | 14V-7v=28 | | -7=1+8x | | 5(7c+4)=3(2c-3) | | 14-(2q+5)=-2+q | | 43=8c−543 | | -0.6x-9-2x=10 | | x+18/x=-9 | | 4=16/q | | 9(5x+8)=-131 | | 1/9(2m-16)=1/3(2m+14) | | b-7b=36 | | 14x-(8x-7)=37 | | 8+6d=14+3d | | 2x+6/4=-1 | | 46=28-3(x-2) | | 3.9a-5a=-3.2a-6.144 | | 1/10u-3/4=2/3u+1 | | 10+5x=17-3x | | X=-6+6y | | 3(7-9k)+23k=4k-(24-k) |